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On the Scale Dependence
of the Structural Models for Nanocomposite Materials

CARLO  CATTANI*
Difarma, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy

In this paper the mechanical models for nanocomposites are discussed focussing on the main
restrictions of the first order models. It is proposed, according to some results for the second order
models,  to include in the mechanical approach some geometrical parameters to handle the transition
from to scale to scale, but also to refer the modelling to an expedient class of functions which
naturally describe the scale transition.
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The mechanics of materials and nanostructures mainly
deals with the  analysis of problems of nanoformations
connected with  the properties of materials under
deformations, from now on being named as
nanomechanics of materials and structures.

Within this field one of the main problems is to take
into account  the  physical processes in nanoformations,
which can be fully described by the principles of quantum
(or molecular) physics [1].  However, the most used
methods for approaching the description of composite
materials  (in any scale) are based on  continuum physics
(and continuum mechanics). Thus the main hypotheses
are:

- the real material body is replaced with a continuous
distribution of matter within the same shape in a finite
volume of space;

- in each point of this continuous distribution, the density
of mass is a given function.

Together with the scalar field of density the mechanical
approach requires some additional hypotheses on the
behaviour of matter undergoing to some deformations due
to mechanical sources. Therefore the third condition is that:

- in each point of the space domain (filled by the
continuum) are given the;

    - vector field of displacements;
    - tensor field  of stresses;
    - tensor field  of strains.
If these fields are coupled linearly we have the linear

theory on the contrary we have a nonlinear theory either
of elasticity (if the deformations are reversible) or plasticity.
The linear  theory of elasticity for the description of
composite materials is the most successful [2] for at least
three reasons:

- the theoretical models enable to describe and
characterize a wide range of materials, in as such way  that
the results of theoretical models well fit with the evolution
of real materials;

- the linear theory of elasticity is the most investigated
and developed so that many analytical and numerical
methods are well known among the scientific community;

- this  kind of materials have been deeply investigated
especially from experimental point of view so that many
results coming from   fundamental experimental
observations are available.

As a consequence, nanoparticles, nanofibers, nanofilms,
etc at  a first step are investigated by the methods of the
linear theory of elasticity, despite the fact that  they should

be handled by methods of nonlinearmechanics (and more
in general quantum physics). Therefore the mechanical
properties of nanoformations are usually summarized by
a few parameters: the density, the Young elasticity modulus,
the shear modulus, the Poisson ratio, so that the
nanoformation objects are replaced by some models of
continuum mechanics.  For example, the discrete carbon
nanotube-molecule is usually studied as a fictitious solid
rod.

This approach has been proven to be very expedient in
dealing with composite material when both the filler of
composite and the representative volume with respect to
matrix have a nanoscale size [3]. This method of replacing
the discrete molecular structure with a corresponding
theoretical continuum structure has been called
continualization [4]

Theoretical background
Continualization in Composite materials

Let us consider a discrete composite material system
made  of a carbon nanotube and a polyethylene matrix.
Specifically, a (10,10) zig-zag NT is embedded in a filler
made of crystalline polymer matrix.

This system is made by nearly 23000 atoms, including
an 880-C-atom NT, and 178 chains of 42 methylene units
with hydrogen atoms.

According to the continualization principle the matrix is
represented as a  solid continuum while  the nanotube  as
a solid beam [4-6].

Two fundamental problems
Against the continualization principle there are some

experimental observations which suggest us to modify the
mechanical approach. The first one is connected with  the
ver y high mechanical stability and strength of

Fig. 1. (10,10) zig-zag carbon nanotube
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nanocomposites, which cannot be explained by the theory
of elasticity.

These mechanical properties  are determined by the
mechanical interaction  between the matrix and the filler
mostly at the interface. It has been observed that this
interaction depends on the scale and differs from micro-
to nanocomposites [7].

In order to explain this scale-dependent interaction there
are two different approach.  In the first one (e.g. [8-12])
the interaction depends on the Stress Intensity Factors at
the  interface. In the second one the forces are analysed at
the molecular level at the interface between the filler (CNT
– big molecule) and  the matrix (polyethylene –
supermolecular structure from small molecules). Indeed
the last one implies the more general problem of the
transition from the discrete model to the continuum one.

A second problem is associated with the dependence
of the fundamental equations based on averaged
mechanical properties, the average being computed  not
only on volume fractions of filler and matrix.  When the
mechanical properties are evaluated by some averages
then there is no  evidence of the scale (macro-, micro- ,
nano) on the resulting formulas.

There follows that approaching nanostructures with
mechanical models one should add some additional
parameters which reflect the influence of the scale on the
evolution [11], or better one should modify the constants
in a such a way to include the scale dependence.

First and second order microstructural models
The first order models for microstructured  materials

are due to Voigt who proposed (in 1887) to evaluate the
physical parameters of nonhomogeneous material by
averaging the components of material over the volume. In
1929, Reuss proposed to average the inverse tensors of
physical properties of composites. In 1964, Hill showed that
Voigt method gives the higher estimate  whereas the Reuss
one gives the lower estimate, so that the effective Young
modulus is bounded by the so-called Voigt-Reuss brackets.
Similar brackets were found  for the shear modulus
[12,13]but the common feature  of all these formulas is
the absence of a direct “geometrical” parameter related
to the form of structure such as the layer thickness, and
the fiber or granule diameters. In other words,  in the first
order models, there is only an indirect relation with the
volume fraction,  nothing else can directly characterize the
geometrical constraints of the structure.   In the first order
model, the effective parameters are unable to take into
account the  changing of  scales, which characterize the
composite material (characteristic size of internal structure,
filler sizes), thus showing its  inadequacy  for modeling
nanocomposite materials.

 Microstructural model of the second order  proposed
by Bolotin and Novichkov in 1980 [14]  for  layered
composite materials includes, in the fundamental
equations,  a geometrical parameter which is strictly
related to the thickness of the layers allowing thus the
transition from micro- to nanolayers. Another example of
second order microstructural model   with  a geometrical
parameter is the model of elastic mixtures for the wave
propagation in composite materials [15-18].

Wave propagation in composite materials
A two-component (or two phase) mixture  is made by

two interacting and interpenetrated continua. For each
phase is defined the partial displacement vectors:

    (1)

the vector of relative displacements u(1)- u(2), two partial
strain tensors ε(α) and two partial stress tensors σ(α). The
fundamental equations  are:

( ) ( )( ) ( ) (3) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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where C(α),  , C(3)  , are three tensors of elastic constants,
ραα the  partial densities,    and  ρ(k)  the vector of (constant)
inertial interaction. In particular βk the vector of (constant)
force shear interaction depend inversely on  the square
characteristic length of internal structure of material, thus
being a natural candidate as a geometric parameter.

In the case of an isotropic mixture,   vector βk  has only
one significant component, and from 9 constants of
isotropic mixture   only β
owns  this geometrical property.  For instance, in the
Bedford-Sutherland model  [15] it is:

(3)

being δ the fiber radius,  ,  s the distance between

fibers of fibrous periodic composite and

                  (4)

the characteristic length of the microstructure. Therefore
wave propagation in micro- and nanocomposites should
show different phenomena.  In the case of plane
longitudinal waves the fundamental equations reduce to:

                 (5)

                            (6)

        (7)

Results and discussions
In particular, it can be shown [19] that:
-the mixture is a dispersive medium, since the phase

velocities depend nonlinearly on frequency,;

Fig. 2. Carbon nanotube in a polyethylene matrix
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-waves propagate with  two modes, that is two waves
are propagating simultaneously  with different velocities

-the solution has the form of superposition of harmonic
waves:

     (8)

where

   (9)

Thus the geometrical parameter 3β  , interphase shear
interaction, plays a fundamental role for the evolution of
waves in the composites material and shows the
distinctions in characteristic sizes, from micro- to
nanostructured materials.

Scale dependence through the analytical representation
It has been recently observed [20-22] that in studying

some propagation problem it is expedient to represent the
solution (or better the evolution of the initial-boundary
profile) as wavelet series [20-23].  Wavelets are some
families of orthonormal functions, mostly defined in a short
range domain,  depending on 2 parameters: the scaling
factor which compress or  dilate the  function and a
translation parameters [23]. For instance the scaling and
harmonic wavelets [20] are:

(10)
                             

                         

Due to their flexibility they can be used to represent any
kind of localized function. In particular it is possible to solve
the fundamental equations  of the nanocomposites with
respect to this basis by representing the solution (for
longitudinal waves) as

                   (11)

where the wavelet coefficients αk, γ
n

k, are computed by
simple integrals (e.g. [20]).

The emergence from one scale to another can be
realized through the scaling factor n. However, it can be
seen that since  γn

k represent the oscillations (and jumps)
by using a scale parameter ≤ 0 ε≤ 1 the above equation
can be written as

                                         (12)

so that according to the value of ε more details are added
to the representation.

For instance if we consider the wavelet representation
of the function , we obtain figure 3.

Fig. 3. Wavelet representation, with scale
parameter, of the function 
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Conclusions
Within the framework of micromechanics of composite

material there  exist the so called structural models of the
second order  which are sensitive to the structure change
from micro-level [24-27] to nano-level.  On an example of
the structural model of elastic mixture, a geometrical
parameter (interphase shear interaction) shows the
distinction for  composite materials  of micro- and nano-
level. In fact the wave propagation depending on this
parameter gives different phenomena. Moreover, it has
been shown that with a suitable representation of the
solution, by using in particular the wavelets, it is possible
to introduce an additional scale depending parameter for
the transition from one scale to another.
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